Self-suppression of biofilm

Self-suppression of biofilm

Biofilms are consortia of bacteria that are held together by an extracellular matrix. Cyanobacterial biofilms, which are highly ubiquitous and inhabit diverse niches, are often associated with biological fouling and cause severe economic loss. Information on the molecular mechanisms underlying biofilm formation in cyanobacteria is scarce. We identified a mutant of the cyanobacterium Synechococcus elongatus, which unlike the wild type, developed biofilms. This biofilm-forming phenotype is caused by inactivation of homologues of type II secretion /type IV pilus assembly systems and is associated with impairment of protein secretion. The conditioned medium from a wild-type culture represses biofilm formation by the secretion-mutants. This suggested that the planktonic nature of the wild-type strain is a result of a self-suppression mechanism, which depends on the deposition of a factor to the extracellular milieu. The particular niche conditions will determine whether the inhibitor will accumulate to effective levels and thus the described mechanism allows switching to a sessile mode of existence.


Left panels: The T2SE-mutant (T2SEΩ) adheres to the growth tube, in contrast to the wild-type strain, which is characterized by planktonic growth. Right panels: Fluorescence microscopy reveals biofilms of T2SEΩ.


Environ Microbiol. 2013 Jun;15(6):1786-94.
Self-suppression of biofilm formation in the cyanobacterium Synechococcus elongatus.
Schatz D, Nagar E, Sendersky E, Parnasa R, Zilberman S, Carmeli S, Mastai Y, Shimoni E, Klein E, Yeger O, Reich Z, Schwarz R